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Scientific Progress

Fundamental research in the area of solid-state devices is a corner stone and an essential requirement for the development of 

future electronic systems with relevance to military defense. In order to offer superior capabilities, these systems will need to 

operate at much higher speeds and frequencies, have greatly increased functionality, and have much higher levels of 

integration

than present day technology provides. Resonant tunneling diodes (RTDs) have been of interest to the physics and engineering 

communities since the 1980s because they are inherently high-speed devices. For example, an RTD-based fundamental 

oscillator achieved the highest frequency generated by a solid-state source (> 700 GHz) in 1991 [1]. The simulation a 

resonant-tunneling diode (RTD) can be made in different ways. The first successful approach was made solving the 

Schrodinger equation and calculating the transmission of a diode.  However there is a problem how to include the scattering 

processes in quantum mechanical simulation a resonant-tunneling diode . The Green function method has been one of 

alternatives. Another alternative was to utilize the Wigner function. The Wigner function approach to the simulation of a 

resonant-tunneling diode offers many advantages. In the limit of the classical physics the Wigner equation turns into the 

Boltzmann equation . The scattering processes can be presented in the similar way as in the Boltzmann equation . A short 

review of simulations made by different authors using the Wigner formalism can be found in [2]. The Wigner function equation 

was first employed in quantum device simulation by Frensley [3]. Later, Kluksdahl et al [4] incorporated Poisson's equation 

(PE)and applied the model to the study of RTD with self-consistent potentials.  They have chosen  Lax-Wendroff explicit time 

differencing. Jensen, and Buot [5]  have used Cayley time evolution operator.

Recent work has focused on solving the time-dependent Wigner-Poisson equations to look for oscillatory solutions. Several 

groups have studied dynamical instabilities and undertaken the simulation the RTD time-dependent behavior using the discrete 

Wigner function approach to look for oscillatory solutions  [5-10]. However there are also difficulties in applications of the 

Wigner formalism. It is important to recognize that the Wigner function is defined over both real and momentum spaces (i.e., 

which differs from all other quantum mechanical formalisms) and this significantly increases the theoretical difficulty associated 

with quantifying the exact requirements on the numerical discretization so as to insure that all necessary physical laws are 

satisfied (e.g., charge continuity, momentum balance, detailed balance of the equilibrium state, and stability of non-equilibrium 

states). Furthermore, the more refined numerical solutions of the Wigner-Poisson model yields results in disagreement with 

prior results that utilized more coarse grained discretizations.

This proposed research project studies the discretization issues associated with the stability and physical accuracy of the 

numerical solutions to the Wigner-Poisson modeling of resonant tunneling diodes. Here the goal is to establish the qualitative 

and quantitative requirements for the phase space discretizations that will be able to generate physically accurate numerical 

solutions to the Wigner-Poisson model for open systems. The goals of this project is also to study stability and physical 

accuracy of numerical solutions to the Wigner-Poisson model.

All authors used the discrete Wigner function which is periodic in momentum space. The periodicity was proved from the 

Fourier transform of the density matrix. The inverse Fourier transform  provides us with the important proof that the number of 

spatial intervals is equal to  the number of intervals in the momentum space. In addition we obtain that the step size in the 

momentum space does not depend on the number of intervals. As a result the number of relevant intervals in the momentum 

space does not also depend on the total number of intervals.

The analysis of the stability shows that Greg Recine has used an unstable algorithm.
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Abstract. 
 

The Wigner formalism has previously been applied by numerous groups to analyze 

the steady-state behavior of particle transport within open quantum systems. In particular, the 

Wigner-Poisson model has been used as a tool to study electron transport through double-barrier 

resonant tunneling diodes (RTDs) with open boundary conditions. The goals of this project is to 

study stability and physical accuracy of numerical solutions to the Wigner-Poisson model.  

Numerous authors who simulated RTD with the Wigner-Poisson model assumed that the discrete 

Wigner function is periodic in momentum space. The periodicity follows from the Fourier 

transform of the density matrix. The inverse Fourier transform provides us with the important 

proof that the number of spatial intervals is equal to  the number of intervals in the momentum 

space. In addition we obtain that the step size in the momentum space does not depend on the 

number of intervals. As a result the number of relevant intervals in the momentum space does not 

also depend on the total number of intervals. Stability of  algorithms used by different authors is 

investigated. The analysis of the stability shows that Greg Recine has used unstable algorithm. . 

 

1.Introduction. 
 

 

Fundamental research in the area of solid-state devices is a corner stone and an essential 

requirement for the development of future electronic systems with relevance to military defense. 

In order to offer superior capabilities, these systems will need to operate at much higher speeds 

and frequencies, have greatly increased functionality, and have much higher levels of integration 

than present day technology provides. Resonant tunneling diodes (RTDs) have been of interest to 

the physics and engineering communities since the 1980s because they are inherently high-speed 

devices. For example, an RTD-based fundamental oscillator achieved the highest frequency 

generated by a solid-state source (> 700 GHz) in 1991 [1.1]. 

The simulation a resonant-tunneling diode (RTD) can be made in different ways. The 

first successful approach was made solving the Schrodinger equation and calculating the 

transmission of a diode.  However there is a problem how to include the scattering processes in 

quantum mechanical simulation a resonant-tunneling diode . The Green function method has been 

one of alternatives. Another alternative was to utilize the Wigner function .  

The Wigner function approach to the simulation of a resonant-tunneling diode offers 

many advantages. In the limit of the classical physics the Wigner equation turns into the 

Boltzmann equation . The scattering processes can be presented in the similar way as in the 

Boltzmann equation . A short review of simulations made by different authors using the Wigner 

formalism can be found in [2]. 

The Wigner function equation was first employed in quantum device simulation 



by Frensley [3]. Later, Kluksdahl et al [4] incorporated Poisson's equation (PE) and applied the 

model to the study of RTD with self-consistent potentials. They have chosen  Lax-Wendroff 

explicit time differencing. Jensen, and Buot [5]  have used Cayley time evolution operator. 

Recent work has focused on solving the time-dependent Wigner-Poisson equations to 

look for oscillatory solutions. Several groups have studied dynamical instabilities and undertaken 

the simulation the RTD time-dependent behavior using the discrete Wigner function approach to 

look for oscillatory solutions  [5-10]. 

However there are also difficulties in applications of the Wigner formalism. It is 

important to recognize that the Wigner function is defined over both real and momentum spaces 

(i.e., which differs from all other quantum mechanical formalisms) and this significantly 

increases the theoretical difficulty associated with quantifying the exact requirements on the 

numerical discretization so as to insure that all necessary physical laws are satisfied (e.g., charge 

continuity, momentum balance, detailed balance of the equilibrium state, and stability of non-

equilibrium states). Furthermore, the more refined numerical solutions of the Wigner-Poisson 

model yields results in disagreement with prior results that utilized more coarse grained 

discretizations. 

This proposed research project studies the discretization issues associated with the 

stability and physical accuracy of the numerical solutions to the Wigner-Poisson modeling of 

resonant tunneling diodes. Here the goal is to establish the qualitative and quantitative 

requirements for the phase space discretizations that will be able to generate physically accurate 

numerical solutions to the Wigner-Poisson model for open systems. The goals of this project is 

also to study stability and physical accuracy of numerical solutions to the Wigner-Poisson model. 

 

2. Discretization. 
 

Let us consider in more detail a problem of discretization. An equation for the Wigner 

function can presented as follows 

)),,(()),,(()),,((),,( tkXfStkXfPtkXfTtkXf
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∂
   (1) 

Here, T represents the kinetic energy for electrons in the device, P represents the 

potential energy of the electrons, and  S the effects of collisions in the device. 

In the Wigner-Poisson model eq.(1) has to be solved self consistently with the Poisson 

equation to account for space charging effect.  
The Wigner function, f,  is a result of the Weyl- Wigner transform of the density matrix 
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It is possible to write reverse transform 
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So the following equation has to be valid 
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If we introduce discretization a fixed spatial with a mesh of  we can rewrite this equation as 

follows 

 

),(
2

),(
2

),( , kXf
kxN

qXfdq
xN

kXf x

qk

x

π
δ

π

∆∆
=

∆
= ∫    (5) 

 

As a result we have the relationship between momentum and spatial intervals 
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which was used in all simulations. 

 
The discrete Wigner function is periodic in momentum space, with a period of  
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The spatial interval is equal to 
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Therefore the following relations can be written for momentum interval 
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Hence  the maximal  wave vector is equal to 
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So it corresponds to the maximal  kinetic energy in the momentum space. 
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These relations are taken from William R. Frensley  ]3]. 

However the more refined numerical solutions of the Wigner-Poisson model yields 

results in disagreement with prior results that utilized more course grained discretizations. 

Simulation runs were also performed to show that the size of the momentum mesh can affect the 



shape of the steady-state current -voltage curve and the shape of the Wigner distribution, but the 

size of the spatial mesh does not affect either. The left plot of Figure 1 shows results using a fixed 

spatial mesh of Nx = 513 (where Nx represents a measure of spatial grid points used as was 

defined earlier) and a variety of momentum meshes, whereas the right plot shows a fixed 

momentum mesh using Nk = 1024 and various spatial meshes. The maximum value of the current 

density and the shape of the peaks in the current voltage  curve change significantly as the 

momentum grid were refined, but remain unaffected by changes to the spatial grid. 

 

 
 
Figure 1. Steady-state IV curves for (left side) fixed spatial mesh, Nx=513, and various 

momentum meshes, and (right side) fixed momentum mesh, Nk=1024, and various spatial 

meshes. 

 

 However we will be able to demonstrate that the number of both intervals have to be 

equal to each other if we continue to follow the way which has permitted to us to establish the 

relationship between momentum and spatial intervals.  

A similar derivation can be made for the density matrix. The following equation has 

to be valid 
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If we introduce discretization we can rewrite this equation as follows 
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As a result we have the second relationship between momentum and spatial intervals 

kN
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Comparing two relationships we have to make a conclusion that momentum and spatial 

intervals are not independent. The number of spatial intervals is equal to  the number of intervals 

in the momentum space 

xk NN =    (15) 

 



 

In addition we obtain that the step size in the momentum space does not depend on the number of 

intervals 
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At last a more drastic conclusion has to be made. The maximal  energy  grows with the 

increase of the number of intervals. However  all variations went to zero before reaching the 

edges of the wave vector space. As well as the step size in the momentum space does not 

depend on the number of intervals the number of relevant intervals in the momentum space does 

not also depend on the total number of intervals. So even in this case it is natural to end 

simulation at lower values of the wave vector when all variations went to zero before 

reaching the edges of the wave vector space .  
In earlier papers  it was taken 
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Hence Emax=3.1 eV is too large.   
The number of relevant points in the momentum space is possible to estimate if we take the 

barrier height 0.3 eV as the characteristic value for the end of the variations.  

We obtain 26 essential intervals for positive momentums. Hence the number of relevant points is 

comparable with the total number of points. However the situation is different when the total 

number of points is large.  
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grows. 
At the same time the number of relevant points in the momentum space 
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remains almost the same . 

 
 

3. Stability consideration. 
 

 

A common numerical technique for solving discretized temporal equations is explicit 

differencing. However  an explicit scheme is unconditionally unstable . Stability of the Lax 

method requires that error in the discretized equation remains bounded. Fourier analysis of the 

growth of error in these schemes has led to the Courant-Friedrichs-Lewy stability criterion.  
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where v is the velocity of the fastest component of the solution. 

N. C. Kluksdahl, A. M. Kriman, and D. K. Ferry C. Ringhofer [4] have chosen  Lax-Wendroff 

explicit time differencing. K. L. Jensen and F. A. Buot [54] utilize Cayley time evolution 

operator. However Greg Recine does not use Cayley time evolution operator. He uses Runge-

Kutta type of solver, namely the ROCK4 subroutine. It is known that ROCK4 is an explicit 

method. Such methods are unstable. 

Let us analyze Stability of Cayley time evolution operator. It is enough for this purpose to 

take into account  
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for k>0 
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for k<0. 

 

A Cayley time evolution operator will be 
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According to von Neuman stability analysis we are looking for the solution as 
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for k>0 
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Substituting (25) into   (23) we obtain 
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We have stable algorithm if an amplitude  
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(27) 

is less than 1 for q< qth where the threshold value of q is equal to 

xqth ∆= /π    (28) 

 

Similar calculation for k<0 gives 
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It follows from our solution that there is instability at large q at any time step.  

It is interesting that the threshold value of q does not depend on k. 

Let us compare with Lax method. 

 

)(
2

)](
2

1
[

1
1111

1 n

j

n

j

n

j

n

j

n

j ff
xm

k
fff

t
−+−+

+ −
∆

−=+−
∆

h
   (30) 

 

or 
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According to von Neuman stability analysis we have 

 

)sin()cos( xq
xm

tki
xq ∆

∆

∆
−∆=

h
ξ    (32) 

 

The magnitude is equal to 
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We have as a result Courant-Friedrichs-Lewy stability criterion  
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which does not depend on q but depends on k.  

 

4.Conclusion. 



 

All authors used the discrete Wigner function which is periodic in momentum space. The 

periodicity was proved from the Fourier transform of the density matrix. The inverse Fourier 

transform  provides us with the important proof that the number of spatial intervals is equal to  the 

number of intervals in the momentum space. In addition we obtain that the step size in the 

momentum space does not depend on the number of intervals. As a result the number of relevant 

intervals in the momentum space does not also depend on the total number of intervals. 

The analysis of the stability shows that Greg Recine has used an unstable algorithm. . 
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